

Welcome! If you want to
follow along, borrow a
flash drive, copy the

contents to your drive,
and see the README.

Or, download from:
thewoolleyweb.com/

ci_for_the_rails_guy_or_gal

Warning: If you are
reading this from a
handout or virtual
machine, it may be

outdated. See latest at:
thewoolleyweb.com/

ci_for_the_rails_guy_or_gal

OpenOffice Font Twiddling: For
portability, this preso uses

Helvetica Bold, which works fine
on NeoOffice/mac. If this makes
the text too big (and it probably

will on OpenOffice/linux) use
FreeSans Bold (which I've

provided in tools/font): Outline
Tab, Edit > Select All, change font

to FreeSans Bold.

CI for the
Rails

/G(uy|al)/

Obligatory
Boiler
Plate

Who

Chad
Woolley

thewoolleyman @
gmail.com

thewoolleyweb.com

Who are YOU? CI?
Linux?

Virtualization?
Javascript
Testing?

Selenium?

What

CI ==
Continuous
Integration

Martin Fowler -
Seminal CI

Article

Running all
your tests
on every
commit

Automatically

How

Takahashi
Method ==
Big Font!

Focused on how
to install and

make everything
work together, not
on details of how
to use the tools

Just the basics, no
obtuse shell tricks,
won't use the latest

extensions,
wrappers, libraries,

or plugins

But I encourage you
to look into them,
useful additions/

extensions will be
mentioned later.

Well, maybe a few
bleeding edge

things, time
permitting

Agenda:

1. Code: The
simplest tutorial

that could
POSSIBLY work

Coding
Tasks

Outline

A. Install
Linux on
VMWare

B. Install Prereqs:
ruby, java, sqlite,
svn, ant, alternate

browser

C. Create
sample Rails

Project

D.
cruisecontrol.rb

setup

E. JsUnit
Setup

F. Selenium
Setup

Z. Git

2. Gettin'
Fancier

3. Gotchas

4. Questions

Tools
Used

Cross-
Platform,
Mostly*

Free

* VMware is
not free on

all platforms

VMware

Parallels is a
Virtualization
Alternative

Or, you can skip
Virtualization and

install Ubuntu
directly on a spare
PC. Just burn the
ISO image to a CD.

Ubuntu Linux

cruisecontrol.rb

JsUnit

Selenium

There is a lot
of material in

this
presentation

We will
move FAST

Maybe too fast
for you to

follow along
during the

preso (sorry!)

But it's all
on the
slides

Overachievers
can yell “Bingo”

if you finish it
before I do.

Everyone else
can pair up and
help each other

Intended to be
comprehensive,

easily
repeatable,

generic, cross-
platform

Contains
everything*
you need to
try this on a
real project

* “everything” except
the stuff that doesn't

work on your project or
environment or latest

versions. Error
messages and Google

are your friend :)

As a matter of fact, it almost
certainly won't work perfectly
for you. Integrating this stuff

is hard, and new problems
arise as tools and libraries

evolve. Embrace the
bleeding cutting edge, keep a
positive attitude, and help fix

bugs.

It's OK to sit
back and

watch

Try it at your
home or

workplace, at
your own pace

You can try it on a
mac, but slides

target an Ubuntu VM
for maximum

portability and
repeatability

Live!

No Hand
Waving

Their
WILL be
typos!

You down
with

OCD?

Then
you'll

know me!

Just please
don't be

“That Guy”
(or Gal)!

You know, “That Guy”
who stands up and

wants to expound on
irrelevant minutiae

during the middle of a
presentation...

Nitpicks,
Flames and

Hints
Welcome...

...over beer,
AFTER the

tutorial

...but seriously, if you
are a bit OCDish, you
might make a good CI

G(uy|al) - because
there's a lot of moving
parts that all have to

integrate...

...Continuously!

1. Time
to Code!

WARNING: If you try to
cut and paste

commands from the
presentation (and you
can, they're all there),

use the OpenOffice doc.
Pasting from PDF

inserts bad line breaks

A. Install
Linux on
VMWare

No time to install
Linux live, but
VMWare and

images are on
USB Keys

My Barebones Linux VM Setup:

Base:
VMWare on Macbook Pro 17”
Ubuntu 7.10 desktop VM from ISO
VMware Tools installed

Optional:
Change resolution (System > Preferences
> Screen Resolution)
Mouse Acceleration and Sensitivity
Terminal scrollback

Everything should
work pretty much
the same on any

modern Unix
platform

Following are
screenshots and

instructions to set
up basic Ubuntu

on VMware

We will skip them
for now, but you

can use them as a
guide when you

try it later

Exact steps may
vary depending on

your hardware

Original
screenshots in
/presentation

/screenshots if
these are too
small to read

VMware Mac Setup:
/presentation
/screenshots

/01a_mac_vmware_
fusion_screenshots

01_Virtual_Machine_Library.png

02_Create_New_Virtual_Machine.png

03_Choose_Operating_System.png

04_Name_and_Location.png

05_Virtual_Hard_Disk.png

06_Finish.png

VMware Win Setup:
/presentation
/screenshots

/01b_win_vmware_
server_screenshots

01_VMware_Server_Console.PNG

02_Connect_To_Host.PNG

03_New_Virtual_Machine.PNG

04_Virtual_Machine_Configuration.PNG

05_Select_a_Guest_Operating_System.PNG

06_Name_the_Virtual_Machine.PNG

07_Network_Type.PNG

08_Specify_Disk_Capacity.PNG

Mac/Win Ubuntu VM Setup:
/presentation
/screenshots

/02_ubuntu_vm_
setup_screenshots

01_Start_or_Install_Ubuntu.png

02_Install_Icon.png

03_Welcome.png

04_Where_are_you.png

05_Keyboard_Layout.png

06_Prepare_disk_space.png

07_Guided_Partitioning.png

08_Who_are_you.png

09_Ready_to_install.png

10_Installing_system.png

11_Installation_complete.png

12_Please_Remove_The_Disk.png

13_VMware_Tools_reminder.png

14_Login.png

15_Virtual_Machine_Menu_Install_VMware_Tools.png

16_Installing_the_VMware_Tools_package.png

At this point, you may need
to reboot (System -> Quit ->

Restart) in order for the
VMware Tools CD image to

mount correctly, especially if
you already have the Ubuntu

ISO image mounted.

In fact, with Leopard/ VMWare
Fusion 1.1.1/Ubuntu 7.10, the

VMWare Tools image was
corrupt until VM reboot. This

didn't happen with
Tiger/VMWare Fusion

Beta/Ubuntu 7.04

17_Open_VMWare_Tools_Image.png

18_Extract_VMware_Tools.png

19_Applications_Accessories_Terminal.png

Install VMware Tools (Optional):
$ cd
$ tar -zxvf /media/cdrom0/VMwareTools-7.6.2-
72241.tar.gz
$ cd ~/vmware-tools-distrib
$ sudo ./vmware-install.pl
enter password for sudo
hit enter repeatedly to accept defaults for all
prompts, override display size if desired
reboot (System -> Quit -> Restart)

20_Software_Updates_Available.png

21_Update_Manager_Menu_Item.png

22_Update_Manager_Downloading_Package_Files.png

23_Your_System_is_Up_To_Date.png

By default on Ubuntu
7.10, the virtual wired

network connection was
set to “enable roaming

mode”. I had to
manually disable this

and enable DHCP to get
network access.

24_Network_Administration.png

25_Checked_Wired_Connection_DHCP.png

Opening an existing VM
Image Copy:
/presentation
/screenshots

/03_virtual_machine_copy

01_Browse_for_a_Virtual_Machine.PNG

02a_Mac_Virtual_Machine_Copy.png

02b_Win_Virtual_Machine_Copy.png

03_Missing_ISO_CDROM_Image.PNG

Other Ubuntu Tweaks (Optional):

* System -> Preferences -> Screen Resolution
* System -> Preferences -> Mouse
* Drag Applications -> Accessories -> Terminal
icon to quick launch area
* Terminal -> Edit -> Current Profile -> Scrolling ->
Scrollback = 99999
* Ctrl +, Ctrl - in Terminal to change font size

B. Install
Prerequisites

Legend
$ == shell input
== comment or instructions
(nothing) == editor input or stdin

Example:
sudo should prompt for a password unless you've
sudo'd recently
$ sudo ls
password
should get file list

We will keep
everything in the
home dir, or "~"
You can put it
wherever you

want

You can install
ruby via aptitude, I

will build from
source to make
the instructions
more portable.

Install Ruby from source:
This is already done on the VMware image
“Ubuntu_With_CI_Downloads”
install all prereqs/extensions in case you need
them
$ sudo aptitude update
$ sudo aptitude install -y zlib1g zlib1g-dev
$ sudo aptitude install -y libssl-dev openssl
$ wget ftp://ftp.ruby-lang.org/pub/ruby/ruby-1.8.6-
p114.tar.gz
$ tar -zxvf ruby-1.8.6-p114.tar.gz
$ cd ruby-1.8.6-p114
$ gedit ext/Setup
Uncomment all “non-Win” lines (all except
Win32API and win32ole) by removing “#”
$./configure
$ make
$ sudo make install

Install RubyGems:
Already done on “CI_Downloads” image
$ cd
$ wget
http://rubyforge.org/frs/download.php/35283/ru
bygems-1.1.1.tgz
If this fails, check for a new mirror on:
http://rubyforge.org/frs/?group_id=126
$ tar -zxvf rubygems-1.1.1.tgz
$ cd rubygems-1.1.1
$ sudo ruby setup.rb

Install Sun java:
Already done on “CI_Downloads” image
$ sudo aptitude install -y sun-java6-bin
accept all prompts

Install subversion:
Already done on “CI_Downloads” image
$ sudo aptitude install -y subversion

Install ant:
Already done on “CI_Downloads” image
All remaining downloads are in that image
too, but won't be specifically pointed out
$ sudo aptitude install -y ant
$ sudo aptitude install -y ant-optional
By default, this installs Gnu java, not Sun's...

Install “Galeon” as an alternate browser
because jsunit will kill the browser it is testing
$ sudo aptitude install -y galeon

Create Subversion Repo
$ svnadmin create repo

C. Create
sample Ruby

on Rails
Project

Install sqlite3 and gem (default database for Rails)
$ sudo aptitude install -y libsqlite3-dev sqlite3
$ sudo gem install sqlite3-ruby

Install Rails
$ sudo gem install rails
version used in this tutorial is 2.0.2
later versions may behave differently

Create a rails project
$ rails mysite
$ cd mysite

Remove default index.html and create a page
$ rm public/index.html
$ script/generate scaffold User name:string
$ rake db:migrate

Test rails site
$ rake # should pass all tests
$ script/server
New Terminal Tab: File -> Open Tab or Ctrl-Shift-T
should be in mysite dir
$ firefox http://localhost:3000/users
create a user

Import site into subversion
back to Terminal, new tab
change back to home dir (~)
$ cd
remove temp files we don't want to check in
$ rm -rf mysite/log/*
$ rm -rf mysite/tmp
$ svn import mysite file:///home/ci/repo/mysite -m
"import"
$ rm -rf mysite
$ svn co file:///home/ci/repo/mysite mysite

Set svn:ignores
ignore all temp files, always have a clean working
copy. Boring and obsessive, but avoids 'mysterious'
errors on CI due to missing files
$ cd mysite
$ export EDITOR=gedit
$ svn propedit svn:ignore .
tmp
logs
$ svn propedit svn:ignore log
add * to ignore list
*
$ svn commit -m "ignores"
$ cd

D.
cruisecontrol.rb

setup

cruisecontrol.rb is still in
active development. We
will use the 1.3.0 release,

but there are new
features in trunk, like Git

support

Check
http://cruisecontrolrb.thought

works.com/projects
for a recent, successfully

building revision if you want
to use trunk - as soon as they

have their new Git repo
building there ;)

Download and unzip cruisecontrol.rb:
$ wget
http://rubyforge.org/frs/download.php/36026/cruisecontrolrb-
1.3.0.tgz
If this fails, check for a new mirror on:
http://rubyforge.org/frs/?group_id=2918
$ tar -zxvf cruisecontrolrb-1.3.0.tgz
rename cruise dir to cc
$ mv cruisecontrolrb-1.3.0 cc

Set up project in cruisecontrol
$ cd cc
$./cruise add MySite --url file:///home/ci/repo/mysite
$./cruise start

View cruisecontrol web page
Go to Galeon browser
Applications -> Internet -> Galeon to start
open http://localhost:3333
click MySite
Should be passing
Remember, this can be any non-firefox browser, we
are just using a different one that won't get killed by
jsunit

Take this opportunity to
familiarize yourself with
cruisecontrol.rb. It's not

covered here ;)
http://cruisecontrolrb
.thoughtworks.com/

Add cruise task to Rakefile
Go back to Terminal, open another tab
cd to Rails project dir
$ cd ~/mysite
$ gedit Rakefile
Add cruise task to bottom after 'requires':
task :cruise do
 Rake::Task['test'].invoke
end
$ svn commit Rakefile -m "add cruise task"
Check cruise webpage, should still be passing

Tweak firefox for automation
open or switch to firefox, navigate to 'about:config'
search for
'browser.sessionstore.resume_from_crash'
toggle to false
Edit - Preferences - Tabs - uncheck all warnings
Advanced - Update - turn off automatic updates
Note – sometimes this doesn't “take”...
Exit firefox

E. JsUnit
Setup

Download and Unzip JsUnit
$ cd
$ wget
http://easynews.dl.sourceforge.net/sourceforge/jsuni
t/jsunit2.2alpha11.zip
$ unzip jsunit2.2alpha11.zip
copy junit.jar file to Ant lib dir (required by Ant)
$ sudo cp jsunit/java/lib/junit.jar /usr/share/ant/lib/

Copy jsunit to your app and check in
$ cd ~/mysite/public/javascripts
$ mv ~/jsunit .
$ svn add jsunit
$ export EDITOR=gedit
$ svn propedit svn:ignore jsunit/logs
add * to ignore list
*
$ svn propedit svn:executable jsunit/bin/unix/start-
firefox.sh
enter “true”
$ svn commit -m "add jsunit"

Create a jsunit test
$ mkdir test_pages
$ gedit test_pages/prototype_test.html
<html>
<head>
 <script language="JavaScript"
type="text/javascript"
src="../jsunit/app/jsUnitCore.js"></script>
 <script language="JavaScript"
type="text/javascript" src="../prototype.js"></script>
 <script language="javascript">
 function testPrototypeWordSplit() {
 string = 'one two three';
 assertEquals('one', ($w(string))[0]);
 }
 </script>
</head>
<body></body>
</html>

Run the jsunit test manually from browser and
commit
$ cd ~/mysite
$ ruby script/server # unless you still have it running

$ firefox
http://localhost:3000/javascripts/jsunit/testRunner.ht
ml
Enter this in the "Run" field and click “Run”:
http://localhost:3000/javascripts/test_pages/prototyp
e_test.html
exit Firefox, go back to terminal
$ svn add public/javascripts/test_pages
$ svn commit -m "jsunit test"

Take this opportunity to
familiarize yourself with

JsUnit and JsUnit
Server. It's not covered

here ;)
http://jsunit.net/

JsUnit Modern UI (in trunk)

"Punt" and make a manual jsunit_start_server script
Because automated process management is not
TSTTCPW for this tutorial, and it's hard
This is also easily ported to a batch file on windows
$ cd ~/mysite
$ gedit script/jsunit_start_server.sh
ant -f
/home/ci/mysite/public/javascripts/jsunit/build.xml
-DbrowserFileNames=
/home/ci/mysite/public/javascripts/jsunit/bin/unix/star
t-firefox.sh -Dport=8081 start_server

Check in jsunit_start_server script and leave it
running
$ svn add script/jsunit_start_server.sh
$ svn propedit svn:executable
script/jsunit_start_server.sh
add 'true' line
$ script/jsunit_start_server.sh
ignore warning about tools.jar
make sure it starts and leave it running
(ctrl-c when you want to kill it later)
open a new terminal tab
$ cd ~/mysite
$ svn ci -m "add jsunit start script"

Add jsunit task
$ gedit Rakefile
task :cruise do
 Rake::Task['test'].invoke
 Rake::Task['jsunit_distributed_test'].invoke
end

task :jsunit_distributed_test do
 output = `ant -f public/javascripts/jsunit/build.xml
-Durl=http:
//localhost:8080/jsunit/jsunit/testRunner.html?testPa
ge=/jsunit/test_pages/prototype_test.html
-DremoteMachineURLs=http://localhost:8081
-DresourceBase=public/javascripts distributed_test`
 raise "JsUnit Failed:\n" + output unless
$?.success?
 puts "JsUnit tests passed"
end

Commit jsunit task and check cruise
Open cruise webpage under galeon, if not open
jsunit will kill firefox, so we need a different
browser
Applications - Internet – Galeon, open
http://localhost:3333
$ svn commit Rakefile -m "add
jsunit_distributed_test task"
Check cruise webpage, should still be passing
You will see jsunit pop up Firefox automatically as
the build is running

F. Selenium
Setup

Install Selenium Gem
WARNING: use capital “S” Selenium – there is
another rubyforge lowercase “s” selenium project,
and a dozen other similarly-named ones.
WhatEVER...
$ sudo gem install Selenium --version=1.0.7
NOTE: Version 1.0.7 currently has some mirror
issue on RubyForge, if it doesn't download, try to pull
from my gem server:
$ sudo gem install Selenium --
source=http://gems.thewoolleyweb.com

Start selenium using command from Selenium gem
$ selenium
make sure it starts and leave it running, ctrl-c to kill it
Open new terminal tab

Set up selenium test dir
$ cd ~/mysite
$ mkdir test/selenium

Create selenium test stub
$ gedit test/selenium/user_test.rb
require 'test/unit'
require 'rubygems'
require 'selenium'

class UserTest < Test::Unit::TestCase
 def setup
 @browser = Selenium::SeleniumDriver.new("localhost",
4444, "*firefox /usr/lib/firefox/firefox-bin",
"http://localhost:3001", 10000)
 @browser.start
 end

 def teardown
 @browser.stop
 end

 def test_user_add_flow
 end
end

Fill in selenium test stub
$ gedit test/selenium/user_test.rb
 def test_user_add_flow
 timestamp = Time.new.to_s
 user_name = 'joe ' + timestamp
 @browser.open "http://localhost:3001/users"
 @browser.click "link=New user"
 @browser.wait_for_page_to_load
 @browser.type "id=user_name", user_name
 @browser.click "commit"
 @browser.wait_for_page_to_load
 assert @browser.is_text_present(user_name)
 end

Create selenium_test rake task including start and stop of
server
$ gedit Rakefile
task :cruise do
 ...
 Rake::Task['selenium_test'].invoke
end

task :selenium_test do
 begin
 process = IO.popen("ruby
/home/ci/.cruise/projects/MySite/work/script/server --
port=3001")
 output = `ruby test/selenium/user_test.rb`
 raise "Selenium Failed:\n" + output unless $?.success?
 puts "Selenium tests passed"
 ensure
 Process.kill(9,process.pid)
 end
end

Check in and check cruise
$ svn add test/selenium
$ svn commit -m "selenium test"
check cruise, it should run everything and be green

Break tests and fix them!
cause ruby/jsunit/selenium failures, and check
them in
see cruise go red, then fix them
click links for ruby/selenium failures
there's a test bug! (next page after too many tests)
good to drop DB before each CI run...
This naive implementation has return code bugs
(crash if webrick already running)

Same concept
for other tools/

Languages/
CI Engines

Now for some
bleeding edge
ccrb + Git, hot
off the press

Install Git:
For some reason, Ubuntu/aptitude wanted to install
git off the Ubuntu CD, so disable that
$ sudo gedit /etc/apt/sources.list
comment first 'cdrom' line and save
$ sudo aptitude install -y git-core git-svn

Clone current svn repository to git:
$ git-svn clone file:///home/ci/repo/mysite ~/mysite-
git

Clone and run trunk of ccrb, which has Git support:
$ git clone git://rubyforge.org/cruisecontrolrb.git
~/cc-git
find tab currently running cc 1.3.0, ctrl-c to stop it
(look for localhost:3333 in console)
$ cd ~/cc-git
$./cruise start
go to a new tab

Create and run ccrb project for the mysite git project:
$ cd ~/cc-git
$./cruise add MySiteGit -s git -r /home/ci/mysite-git
open/refresh Galeon for new project
Applications -> Internet -> Galeon -> localhost:3333
Click “Start Builder”
Watch for jsunit and selenium to run
should get a successful build!
Notice truncated GUID as build ID instead of svn
revision

Coding Done!

2. Gettin'
Fancier

All
Handwaving

Now

Multiplatform

Multibrowser

Farms

Selenium Grid
JsUnit Server

Virtualization:
One Box,

Three Platforms
mac/win/linux

Automate
and Test

Deployment
Process

Test
Rollback
process!

Configuration
Management /

Version
Control

Auto-tag
Green
Builds

Automatically
pre-create
Release

Branches

Build ALL
active

branches
under CI

Multiple
Libraries/
Projects

Dependencies
Among

Common
Libraries and

Projects

Dependency
modifications
should trigger

builds of all
dependents

Consistent
Tags/Baselines

Among
Projects:

Naming/Usage

Versioning of
Dependencies (or not):

Mainline / Snapshot /
trunk / HEAD

vs
baselines / tags

Different Builds
for Different

Environments:
Development vs

Demo/Prod

Publishing Artifacts/
Dependencies:

Deployed
(Jars/Gems)

vs
SCM (svn:externals)

Hackability vs
Stability: Fear

should not inhibit
improvement of

common libraries

What dependency
versions are you

running on prod?
Is it the same as

dev?

Cautious
Optimism

http://tinyurl.com/2cvbj4

Nirvana: Green
tags/artifacts instantly

used across all dev
environments, all

deploys have known,
green, stable, baselined

dependencies

Suites:
You can

have more
than one!

It's all
about

Feedback

Timely
vs

Comprehensive

Fast
vs

Thorough

Commit-
Triggered vs
Scheduled

Minimize
Checkout

Time

But safer
to do
clean
builds

Get HUGE
Dependencies and

binaries out of
Source Control if
they take a long

time to check out

RubyGems
vs

piston/
svn:externals

Metrics

Code
Coverage -

rcov

Mutation
Testing –
Heckle

Flog:
Hurt Your

Code

red/green
trends

Build
Length
Trends

Notification

Information
Radiator(s)

email

CCMenu /
CCTray

RSS

IM

Growl

Ambient
Orb

13” CRT
with

red/green
background

Suggested audio for first
failure, continued failure,
fixed: Homer Simpson &
Arnold Schwarzenegger

Doh!, You Lack
Discipline!, WooHoo!

(The Louder the Better)

Whatever
people will

pay
attention to!

Aggregate and
display multiple
ccrb instances
via RSS feeds

(easy Rails app)

Tool
Shoutouts

GemInstaller
http://geminstaller.rubyforge.org

jQuery
http://jquery.com

JSSpec
http://code.google.com/p/jsspec

Polonium,
js_spec
(runner),

Funkytown
http://rubyforge.org/projects/pivotalrb

Screw::Unit
http://rubyforge.org/projects/screwunit

JsUnitTest
http://jsunittest.com/

Any More?

3. Gotchas

Random Gotchas / Mantras:

* “It's not easy being Green”
* Broken Windows are Bad (“Who cares, it's
always red...”)
* False Negatives are Bad
* Crying Wolf (“it failed for no reason”)
* “Intermittent” failures (but it's not intermittent
after you can reproduce it)
* “Works Locally” (is your local environment the
same as CI? Which one is Prod closer to???)
* You can always “temporarily” disable a test in CI
* One disabled test is better than a red CI
* Browser Settings (autoupdate, etc) Preventing
Browser Close

More Random Gotchas:

* False Positives are Bad too - being Green, when
return code (echo $?) from some step is not 0
* Tricks to avoid false positives:
 * Use rake task exec
 * system(“cmd”) || raise(“cmd failed)
* Test::Unit had return code bugs for a long time
due to not handling entire Exception class
hierarchy correctly (Finally fixed in Ruby
1.8.6/1.9???)

4. Questions?

Chad Woolley
PivotalLabs.com

thewoolleyman@gmail.com
thewoolleyweb.com/

ci_for_the_rails_guy_or_gal

